如图,在梯形中,,已知,点为边上的动点,连接,以为圆心,为半径的⊙分别交射线于点,交射线于点,交射线于,连接.(1)求的长.(2)当时,求的长.(3)在点的运动过程中,①当时,求⊙的半径.②当时,求⊙的半径(直接写出答案).
如图,D,E,分 别 是 AB,AC 上 的 点 ,且AB=AC,AD=AE.求证∠B=∠C.
解方程:x2+3x+1=0.
如图所示,在平面直角坐标系中,抛物线经过A(-1,0)、B(0,-5)、C(5,0).(1)求此抛物线的表达式;(2)若平行于轴的直线与此抛物线交于E、F两点,以线段EF为直径的圆与轴相切,求该圆的半径;(3)在点B、点C之间的抛物线上有点D,使的面积最大,求此时点D的坐标及的面积.
如图,面积为8的矩形ABOC的边OB、OC分别在轴、轴的正半轴上,点A在双曲线的图象上,且AC=2.(1)求值;(2)将矩形ABOC以B旋转中心,顺时针旋转90°后得到矩形FBDE,双曲线交DE于M点,交EF于N点,求△MEN的面积.(3)在双曲线上是否存在一点P,使得直线PN与直线BC平行?若存在,请求出P点坐标,若不存在,请说明理由.
某批发商以每件50元的价格购进800件T恤,第一个月以单价80元销售,售出了200件;第二个月如果单价不变,预计仍可售出200件,批发商为增加销售量,决定降价销售,根据市场调查,单价每降低1元,可多售出10件,但最低单价应高于购进的价格;第二个月结束后,批发商将对剩余的T恤一次性清仓销售,清仓是单价为40元,设第二个月单价降低元.(1)填表:(不需化简)(2)如果批发商希望通过销售这批T恤获利9000元,那么第二个月的单价应是多少元?