某电子厂商投产一种新型电子产品,每件制造成本为18元,试销过程中发现,每月销售量(万件)与销售单价(元)之间的关系可以近似地看作一次函数.(利润=售价-制造成本)(1)写出每月的利润(万元)与销售单价(元)之间的函数关系式;(2)当销售单价为多少元时,厂商每月获得的利润为440万元?(3)根据相关部门规定,这种电子产品的销售单价不能高于40元,如果厂商每月的制造成本不超过540万元,那么当销售单价为多少元时,厂商每月获得的利润最大?最大利润为多少万元?
某游乐场部分平面图如图所示, C 、 E 、 A 在同一直线上, D 、 E 、 B 在同一直线上,测得 A 处与 E 处的距离为80 米, C 处与 D 处的距离为34米, ∠ C = 90 ° , ∠ ABE = 90 ° , ∠ BAE = 30 ° . ( 2 ≈ 1 . 4 , 3 ≈ 1 . 7 )
(1)求旋转木马 E 处到出口 B 处的距离;
(2)求海洋球 D 处到出口 B 处的距离(结果保留整数).
由多项式乘法: ( x + a ) ( x + b ) = x 2 + ( a + b ) x + ab ,将该式从右到左使用,即可得到“十字相乘法”进行因式分解的公式: x 2 + ( a + b ) x + ab = ( x + a ) ( x + b ) .
示例:分解因式: x 2 + 5 x + 6 = x 2 + ( 2 + 3 ) x + 2 × 3 = ( x + 2 ) ( x + 3 ) .
(1)尝试:分解因式: x 2 + 6 x + 8 = ( x + ) ( x + ) ;
(2)应用:请用上述方法解方程: x 2 − 3 x − 4 = 0 .
为响应习总书记足球进校园的号召,某学校积极开展与足球有关的宣传与实践活动.学生会体育部为了解本校学生对足球运动的态度,随机抽取了部分学生进行调查,并绘制了如下的统计图表(部分信息未给出).
态度
频数(人数)
频率
非常喜欢
5
0.05
喜欢
0.35
一般
50
n
不喜欢
10
合计
m
l
(1)在上面的统计表中 m = , n = .
(2)请你将条形统计图补充完整;
(3)该校共有学生1200人,根据统计信息,估计爱好足球运动(包括喜欢和非常喜欢)的学生有多少人?
如图,在 ▱ ABCD 中, DE = CE ,连接 AE 并延长交 BC 的延长线于点 F .
(1)求证: ΔADE ≅ ΔFCE ;
(2)若 AB = 2 BC , ∠ F = 36 ° .求 ∠ B 的度数.
从 − 2 ,1,3这三个数中任取两个不同的数,作为点的坐标.
(1)写出该点所有可能的坐标;
(2)求该点在第一象限的概率.