在一次购物抽奖活动中,假设某10张奖券中有一等奖卷1张,可获价值50元的奖品;有二等奖卷3张,每张可获价值10元的奖品;其余6张没有奖。某顾客从这10张中任抽2张,求:(1)该顾客中奖的概率;(2)该顾客获得的奖品总价值X(元)的分布列和数学期望。
已知函数.(Ⅰ)设是函数的极值点,求的值并讨论的单调性;(Ⅱ)当时,证明:.
已知椭圆:的一个焦点为,左右顶点分别为,.经过点的直线与椭圆交于,两点.(Ⅰ)求椭圆方程;(Ⅱ)记与的面积分别为和,求的最大值.
如图所示,四棱锥的底面是直角梯形, ,,,底面,过的平面交于,交于(与不重合). (Ⅰ)求证:; (Ⅱ)如果,求此时的值.
已知数列的前项和为,若(),且.(Ⅰ)求证:数列为等差数列;(Ⅱ)设,数列的前项和为,证明:().
在锐角中,分别为角所对的边,且(Ⅰ)确定角的大小;(Ⅱ)若,且的面积为,求的值.