已知两定点E(-2,0),F(2,0),动点P满足,由点P向x轴作垂线段PQ,垂足为Q,点M满足,点M的轨迹为C.(1)求曲线C的方程(2)过点D(0,-2)作直线与曲线C交于A、B两点,点N满足(O为原点),求四边形OANB面积的最大值,并求此时的直线的方程.
给定椭圆:,称圆心在原点,半径为的圆是椭圆的“准圆”.若椭圆的一个焦点为,其短轴上的一个端点到的距离为.(1)求椭圆的方程和其“准圆”方程;(2)点是椭圆的“准圆”上的动点,过点作椭圆的切线交“准圆”于点.(ⅰ)当点为“准圆”与轴正半轴的交点时,求直线的方程并证明;(ⅱ)求证:线段的长为定值.
已知函数.(1)若在处取得极值,求实数的值;(2)求函数的单调区间;(3)若在上没有零点,求实数的取值范围.
如图,已知四棱锥,,,平面,∥,为的中点.(1)求证:∥平面;(2)求证:平面平面;(3)求四棱锥的体积.
某校高一(1)班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的污损,可见部分如下图.(1)求分数在的频率及全班人数;(2)求分数在之间的频数,并计算频率分布直方图中间矩形的高;(3)若要从分数在之间的试卷中任取两份分析学生失分情况,求在抽取的试卷中,至少有一份分数在之间的概率.
在△中,角的对边分别为,且,.(1)求角的大小;(2)若,,求边的长和△的面积.