已知离心率为的椭圆过点,是坐标原点.(1)求椭圆的方程; (2)已知点为椭圆上相异两点,且,判定直线与圆的位置关系,并证明你的结论.
已知正项数列中,其前项和为,且.(1)求数列的通项公式;(2)设,,求证:;(3)设为实数,对任意满足成等差数列的三个不等正整数 ,不等式都成立,求实数的取值范围.
已知椭圆的离心率为,过的左焦点的直线被圆截得的弦长为.(1)求椭圆的方程;(2)设的右焦点为,在圆上是否存在点,满足,若存在,指出有几个这样的点(不必求出点的坐标);若不存在,说明理由.
(本题满分14分)如图1,直角梯形中, 四边形是正方形,,.将正方形沿折起,得到如图2所示的多面体,其中面面,是中点.(1) 证明:∥平面;(2) 求三棱锥的体积. 图1 图2
为调查民营企业的经营状况,某统计机构用分层抽样的方法从A、B、C三个城市中,抽取若干个民营企业组成样本进行深入研究,有关数据见下表:(单位:个)
(1)求、的值;(2)若从城市A与B抽取的民营企业中再随机选2个进行跟踪式调研,求这2个都来自城市A的概率.
已知函数(1)求的值;(2)当时,求函数的值域.