小明的爸爸下岗后,自谋出路,做起了水果生意。一天,他先去批发市场,用100元购进甲种水果,用150元购进乙种水果。乙种水果比甲种水果多10千克,乙种水果的批发价比甲种水果的批发价高0.5元。然后,他到市场零售部,都按每千克2.8元零售,结果乙种水果很快售完。甲种水果售出80%时,出现滞销,他便按原零售价的5折售完剩余水果。请你帮小明爸爸算一算这天卖水果是赔还是赚?赔或赚是多少?
如图,⊙M与x轴交于A、B两点,其坐标分别为、,直径CD⊥x轴于N,抛物线经过A、B、D三点, (1)求m的值及点D的坐标. (2)若直线CE切⊙M于点C,G在直线CE上,已知点G的横坐标为3.求G的纵坐标 (3)对于(2)中的G,是否存在过点G的直线,使它与(1)中抛物线只有一个交点,请说明理由. (4)对于(2)中的G直线FG切⊙M于点F,求直线DF的解析式.
如图,矩形ABOD的两边OB,OD都在坐标轴的正半轴上,OD=3,另两边与反比例函数的图象分别相交于点E,F,且DE=2.过点E作EH⊥x轴于点H,过点F作FG⊥EH于点G.回答下面的问题: (1)该反比例函数的解析式是什么? (2)当四边形AEGF为正方形时,点F的坐标时多少? (3)阅读合作学习内容,请解答其中的问题; 小亮进一步研究四边形AEGF的特征后提出问题:“当AE>EG时,矩形AEGF与矩形DOHE能否全等?能否相似?” 针对小亮提出的问题,请你判断这两个矩形能否全等?直接写出结论即可;这两个矩形能否相似?若能相似,求出相似比;若不能相似,试说明理由.
如图,在边长为1的正方形组成的网格中,△AOB的顶点均在格点上, 其中点A(5,4),B(1,3),将△AOB绕点O逆时针旋转90°后得到△A1OB1. (1)画出△A1OB1; (2)在旋转过程中点B所经过的路径长为(直接写答案); (3)求在旋转过程中线段AB ,OB扫过的图形的面积和.
如图,⊙O中,FG、AC是直径,AB是弦,FG⊥AB,垂足为点P,过点C的直线交AB的延长线于点D,交GF的延长线于点E,已知AB=4,⊙O的半径为. (1)分别求出线段AP、CB的长; (2)如果OE=5,求证:DE是⊙O的切线; (3)如果tan∠E=,求DC的长
在四边形ABCD中,AD∥BC,∠ABC=90°,AB=BC,E为AB边上一点,∠BCE=15°,且AE=AD.连接DE交对角线AC于H,连接BH. (1)求证:AC⊥ED (2)求证:△ACD≌△ACE (3)请猜测CD与DH的数量关系,并证明