某文化用品商店用2000元购进一批学生书包,上市后发现供不应求,商店又购进第二批同样的书包,所购数量是第一批购进数量的3倍,但单价贵了4元,结果第二批用了6300元。(1)求第一批购进书包的单价是多少元?(2)若商店销售这两批书包时,每个售价都是120元,全部售出后,商店共盈利多少元?
已知:如图,DABC内接于⊙O,AB为直径,∠CBA的平分线交AC于点F,交⊙O于点D,DE⊥AB于点E,且交AC于点P,连结AD. 求证:∠DAC =∠DBA;求证:是线段AF的中点若⊙O 的半径为5,AF = ,求tan∠ABF的值.
如图,AB是⊙O的直径,点D在⊙O上,∠DAB=45°,BC∥AD,CD∥AB。判断直线CD与⊙O的位置关系,并说明理由;若⊙O的半径为1,求图中阴影部分的面积(结果保留)
青青草原上,灰太狼每天都想着如何抓羊,而且是屡败屡试,永不言弃.(如图所示)一天,灰太狼在自家城堡顶部A处测得懒羊羊睡觉所在地B处的俯角为60°,然后下到城堡的C处,测得B处的俯角为30°.已知AC=40米,若灰太狼以5m/s的速度从城堡底部D处出发,几秒钟后能抓到懒羊羊?
在一只不透明的口袋中装有两只白球,一只红球,一只蓝球.这些小球除颜色不同外,其余都相同.从这个口袋中随意取出—个小球恰好是白球的概率是 ▲ ;从这个口袋中任意取出两只球,请你用树状图或列表的方法求:①取到的两只球中至少有一只是白球的概率;②取到的两只球的颜色不同的概率.
如图,在□ABCD中,E,F为BC上两点,且BE=CF,AF=DE.求证△ABF≌△DCE;四边形ABCD是矩形