已知数列的前项和为,且满足 (),,设,.(1)求证:数列是等比数列;(2)若≥,,求实数的最小值;(3)当时,给出一个新数列,其中,设这个新数列的前项和为,若可以写成 (且)的形式,则称为“指数型和”.问中的项是否存在“指数型和”,若存在,求出所有“指数型和”;若不存在,请说明理由.
为了估计某校的某次数学期末考试情况,现从该校参加考试的600名学生中随机抽出60名学生,其成绩(百分制)均在上.将这些成绩分成六段,,…,后得到如下部分频率分布直方图. (Ⅰ)求抽出的60名学生中分数在内的人数; (Ⅱ)若规定成绩不小于85分为优秀,则根据频率分布直方图,估计该校的优秀人数.
.(本小题共13分)函数的定义域为R,数列满足(且). (Ⅰ)若数列是等差数列,,且(k为非零常数, 且),求k的值; (Ⅱ)若,,,数列的前n项和为,对于给定的正整数,如果的值与n无关,求k的值.
(本小题共14分)已知函数. (Ⅰ)若函数在,处取得极值,求,的值; (Ⅱ)若,函数在上是单调函数,求的取值范围.
(本小题共13分)在平面直角坐标系xOy中,为坐标原点,以为圆心的圆与直线相切. (Ⅰ)求圆的方程; (Ⅱ)直线:与圆交于,两点,在圆上是否存在一点,使得四边形为菱形,若存在,求出此时直线的斜率;若不存在,说明理由.
(本小题共13分)为了解某地区中学生的身体发育状况,拟采用分层抽样的方法从甲、乙、丙三所中学抽取6个教学班进行调查.已知甲、乙、丙三所中学分别有12,6,18个教学班. (Ⅰ)求从甲、乙、丙三所中学中分别抽取的教学班的个数; (Ⅱ)若从抽取的6个教学班中随机抽取2个进行调查结果的对比,求这2个教学班中至少有1个来自甲学校的概率.