动圆过定点,且与直线相切,其中.设圆心的轨迹的程为(1)求;(2)曲线上的一定点(0) ,方向向量的直线(不过P点)与曲线交与A、B两点,设直线PA、PB斜率分别为,,计算;(3)曲线上的两个定点、,分别过点作倾斜角互补的两条直线分别与曲线交于两点,求证直线的斜率为定值;
如图,在正三棱柱ABC—A1B1C1中,底面边长及侧棱长均为2,D是棱AB的中点,(1)求证;(2)求异面直线AC1与B1C所成角的余弦值.
已知实数满足方程,求:(1)的最大值和最小值; (2)的最小值; (3)的最大值和最小值.
已知圆C的圆心与点关于直线对称.直线与圆C相交于两点,且,求圆C的方程.
如图,在正方体中,为底面的中心,是的中点,设是上的中点,求证:(1);(2)平面∥平面.
根据下列条件求直线方程(1)过点(2,1)且倾斜角为的直线方程;(2)过点(-3,2)且在两坐标轴截距相等的直线方程.