某蔬菜公司收购到某种蔬菜280吨,准备加工后上市销售.该公司的加工能力是:每天可以精加工12吨或者粗加工32吨.现计划用15天完成加工任务,该公司应安排几天粗加工,几天精加工,才能按期完成任务?如果每吨蔬菜粗加工后的利润为1500元,精加工后为3000元,那么该公司出售这些加工后的蔬菜共可获利多少元?
如图,直线y = kx+6与x轴y轴分别相交于点E、F. 点E的坐标为(- 8, 0), 点A的坐标为(- 6,0). 点P(x,y)是第二象限内的直线上的一个动点。 (1)求k的值; (2)当点P运动过程中,试写出△OPA的面积S与x的函数关系式,并写出自变量x的取值范围; (3)探究:当P运动到什么位置(求P的坐标)时,△OPA的面积为,并说明理由
如图,在平面直角坐标系中,函数的图象是第一、三象限的角平分线. 实验与探究:由图观察易知A(0,2)关于直线的对称点的坐标为(2,0),请在图中分别标明B(5,3) 、C(-2,5) 关于直线的对称点、的位置,并写出它们的坐标: 、; 归纳与发现:结合图形观察以上三组点的坐标,你会发现:坐标平面内任一点P(m,n)关于第一、三象限的角平分线的对称点的坐标为; 运用与拓广:已知两点D(0,-3)、E(-1,-4),试在直线上确定一点Q,使点Q到D、E两点的距离之和最小,并求出Q点坐标
如图,点E,F在BC上,BE=CF,∠A=∠D,∠B=∠C,AF与DE交于点O. (1)求证:AB=DC; (2)试判断△OEF的形状,并说明理由
如图,矩形ABCD中,△ABC沿AC折叠,点B落在B'的位置,CB'与AD交于点O,求证:△AOC是等腰三角形
在△ABC中,AB=AC,DE垂直平分AB,且分别交AB、AC于D、E, 若∠A=40°,求∠EBC的度数