已知数列的首项,且(N*),数列的前项和。(1)求数列和的通项公式;(2)设,证明:当且仅当时,。
已知数列是一个等差数列,且.(1)求数列的通项;(2)求的前项和.
(本小题满分12分)已知函数,,点是函数图象上任意一点,直线为函数的图象在点 处的切线.(Ⅰ)求直线的方程;(Ⅱ)若存在点,使得直线与函数的图象相切,求和的取值范围;(Ⅲ)若对于任意直线都不能与函数的图象相切,求证: (其中为自然对数的底数).
(本小题满分12分)从直线:上任意一点引抛物线的两条切线,切点分别为、.(Ⅰ)求证:直线过定点,并求点的坐标;(Ⅱ)求三角形面积的最小值.
(本小题满分12分)已知函数(Ⅰ)若函数在上是减函数,求实数的取值范围;(Ⅱ)令,是否存在实数,使得当时,函数的最小值是?若存在,求出实数的值;若不存在,说明理由.(Ⅲ)当时,证明.
(本小题满分12分)已知椭圆的方程是,椭圆的左顶点为,离心率,倾斜角为的直线与椭圆交于、两点.(Ⅰ)求椭圆的方程;(Ⅱ)设向量(),若点在椭圆上,求的取值范围.