从中任选三个不同元素作为二次函数的系数,问能组成多少条图像为经过原点且顶点在第一象限或第三象限的抛物线?
在边长为的正方形ABCD中,E、F分别为BC、CD的中点,M、N分别为AB、CF的中点,现沿AE、AF、EF折叠,使B、C、D三点重合,构成一个三棱锥.(I)判别MN与平面AEF的位置关系,并给出证明;(II)求多面体E-AFMN的体积.
已知函数(),相邻两条对称轴之间的距离等于.(Ⅰ)求的值;(Ⅱ)当时,求函数的最大值和最小值及相应的x值.
已知是公差为d的等差数列,是公比为q的等比数列(Ⅰ)若 ,是否存在,有?请说明理由;(Ⅱ)若(a、q为常数,且aq0)对任意m存在k,有,试求a、q满足的充要条件;(Ⅲ)若试确定所有的p,使数列中存在某个连续p项的和式数列中的一项,请证明.
已知函数的图象过坐标原点O,且在点处的切线的斜率是.(Ⅰ)求实数的值; (Ⅱ)求在区间上的最大值;(Ⅲ)对任意给定的正实数,曲线上是否存在两点P、Q,使得是以O为直角顶点的直角三角形,且此三角形斜边中点在轴上?说明理由.
已知m>1,直线,椭圆C:,、分别为椭圆C的左、右焦点.(Ⅰ)当直线过右焦点时,求直线的方程;(Ⅱ)设直线与椭圆C交于A、B两点,△A、△B的重心分别为G、H.若原点O在以线段GH为直径的圆内,求实数m的取值范围.[