如图,沿AC方向开山修一条公路,为了加快施工进度,要在小山的另一边寻找点E同时施工,从AC上的一点B取∠ABD=127º,沿BD的方向前进,取∠BDE=37º,测得BD=520m,并且AC、BD和DE在同一平面内. (1)施工点E 离D多远正好能使A、C、E成一直线(结果保留整数) (2)在(1)的条件下,若BC=80m,求公路CE段的长(结果保留整数) (参考数据:sin37º≈0.60, cos37º≈ 0.80, tan37º≈0.75))
如图,在△ABC中,∠ABC=2∠C,BD平分∠ABC,且,,求AB的值.
已知抛物线与x轴相交于两点A(1,0),B(-3,0),与y轴相交于点C(0,3). (1)求此抛物线的函数表达式; (2)如果点是抛物线上的一点,求△ABD的面积.
如图,从热气球C处测得地面A、B两处的俯角分别为30°、45°,如果此时热气球C处的高度CD为100米,点A、D、B在同一直线上,求AB两处的距离.
现有三个自愿献血者,两人血型为O型,一人血型为A型.若在三人中随意挑选一人献血,两年以后又从此三人中随意挑选一人献血,试求两次所献血的血型均为O型的概率(要求:用列表或画树状图的方法解答).
如图1,正方形ABCD是一个6×6网格的示意图,其中每个小正方形的边长为1,位于AD中点处的点P按图2的程序移动. (1)请在图中画出点P经过的路径; (2)求点P经过的路径总长.