在人群流量较大的街道,有一中年人吆喝“送钱”,只见他手拿一黑色小布袋,袋中有3只黄色、3只白色的乒乓球(其体积、质地完成相同),旁边立着一块小黑板写道:摸球方法:从袋中随机摸出3个球,若摸得同一颜色的3个球,摊主送给摸球者5元钱;若摸得非同一颜色的3个球,摸球者付给摊主1元钱。(1)摸出的3个球为白球的概率是多少? (2)摸出的3个球为2个黄球1个白球的概率是多少?(3)假定一天中有100人次摸奖,试从概率的角度估算一下这个摊主一个月(按30天计)能赚多少钱?
(本小题满分12分)已知函数f(x)=ln(x+1)-x. ⑴求函数f(x)的单调递减区间; ⑵若,证明:.
(本小题满分12分) 已知a为实数,。 ⑴求导数; ⑵若,求在[-2,2] 上的最大值和最小值; ⑶若在(-∞,-2)和[2,+∞]上都是递增的,求a的取值范围。
(本小题满分10分)已知f(x)=x3+ax2+bx+c,在x=1与x=-2时,都取得极值。 ⑴求a,b的值; ⑵若x[-3,2]都有f(x)>恒成立,求c的取值范围。
(本小题满分10分)已知二次函数f(x)满足:①在x=1时有极值;②图象过点(0,-3),且在该点处的切线与直线2x+y=0平行. ⑴求f(x)的解析式; ⑵求函数g(x)=f(x2)的单调递增区间.
设函数对任意都有且x>0时,<0, .(1)求在区间[-3,3]上的最大和最小值,(2)解关于x的不等式,(其中)