计算:(1) (2)
已知定义在区间上的函数为奇函数,且(1)求函数的解析式;(2)用定义法证明:函数在区间上是增函数;(3)解关于的不等式.
已知a>0,且a.命题P:函数在内单调递减;命题Q:。如果“P或Q为真”且“P且Q为假”,求a的取值范围。
已知函数.(1)求的最小正周期;(2)求在区间上的最大值和最小值.(3)若g(x)=f(),求函数g(x)的单调增区间;
已知函数(且)(1)若函数在上的最大值与最小值的和为2,求的值;(2)将函数图象上所有的点向左平移2个单位长度,再向下平移1个单位长度,得到函数的图象,写函数的解析式;(3)若(2)中平移后所得的函数的图象不经过第二象限,求的取值范围.
设集合{x},,(1)求; (2)若,求的取值范围。