如图已知点A (-2,4) 和点B (1,0)都在抛物线上.⑴求、n;⑵向右平移上述抛物线,记平移后点A的对应点为A′,点B的对应点为B′,若四边形A A′B′B为菱形,求平移后抛物线的表达式;⑶记平移后抛物线的对称轴与直线AB′ 的交点为点C,试在轴上找点D,使得以点B′、C、D为顶点的三角形与相似.
运动会前夕,小明和小亮相约晨练跑步.小明比小亮早1分钟离开家门,3分钟后迎面遇到从家跑来的小亮.两人沿滨江路并行跑了2分钟后,决定进行长跑比赛,比赛时小明的速度始终是180米/分,小亮的速度始终是220米/分.下图是两人之间的距离y(米)与小明离开家的时间x(分钟)之间的函数图象,根据图象回答下列问题: ⑴请直接写出小明和小亮比赛前的速度. ⑵请在图中的( )内填上正确的值,并求两人比赛过程中y与x之间的函数关系式.(不用写自变量x的取值范围) ⑶若小亮从家出门跑了14分钟后,按原路以比赛时的速度返回,则再经过多少分钟两人相遇?
去年,某校开展了主题为“健康上网,绿色上网”的系列活动.经过一年的努力,取得了一定的成效.为了解具体情况,学校随机抽样调查了初二某班全体学生每周上网所用时间,同时也调查了使用网络的学生上网的最主要目的,并用得到的数据绘制了下面两幅统计图.请你根据图中提供的信息,回答下列问题: ⑴在这次调查中,初二该班共有学生多少人? ⑵如果该校初二有660名学生,请你估计每周上网时间超过4小时的初二学生大约有多少人? ⑶请将图2空缺部分补充完整, 并计算这个班级使用网络的学生中,每周利用网络查找学习资料的学生有多少人?
综合实践活动课上,老师让同学们在一张足够大的纸板上裁出符合如下要求的梯形, 即“梯形ABCD,AD∥BC,AD=2分米,AB=分米,CD=分米,梯形的高是 2分米”.请你计算裁得的梯形ABCD中BC边的长度.
△ABC在如图所示的平面直角坐标系中. ⑴画出△ABC关于原点对称的△A1B1C1. ⑵画出△A1B1C1关于y轴对称的△A2B2C2. ⑶请直接写出△AB2A1的形状.
如图,已知D是BC的中点,过点D作BC的垂线交∠A的平分线于点E,EF⊥AB于点F,EG⊥AC于点G。求证BF=CG