如图,四棱锥的底面为一直角梯形,其中,底面,是的中点.(Ⅰ)求证://平面;(Ⅱ)若平面,求平面与平面夹角的余弦值.
已知抛物线的焦点为F2,点F1与F2关于坐标原点对称,直线m垂直于x轴(垂足为T),与抛物线交于不同的两点P,Q且.(I)求点T的横坐标;(II)若以F1,F2为焦点的椭圆C过点.①求椭圆C的标准方程;②过点F2作直线l与椭圆C交于A,B两点,设,若的取值范围.
已知函数(为常数,且)的图象过点.(1)求实数的值;(2)若函数,试判断函数的奇偶性,并说明理由
某种商品,现在定价p元,每月卖出n件,设定价上涨x成,每月卖出数量减少y成,每月售货总金额变成现在的z倍.(1)用x和y表示z;(2)设x与y满足y=kx(0<k<1),利用k表示当每月售货总金额最大时x的值;(3)若y=x,求使每月售货总金额有所增加的x值的范围.
已知单调递增的等比数列{an}满足a1+a2+a3=14,且a2+1是a1,a3的等差中项.(1)求数列{an}的通项公式;(2)若bn=anlog2an,求数列{bn}的前n项和Sn;(3)若存在n∈N*,使得Sn+1﹣2≤8n3λ成立,求实数λ的最小值.
如图,在三棱柱ABC﹣A1B1C1中,AA1⊥底面ABC,且△ABC为正三角形,AA1=AB=6,D为AC的中点.(1)求证:直线AB1∥平面BC1D;(2)求证:平面BC1D⊥平面ACC1A;(3)求三棱锥C﹣BC1D的体积.