以下茎叶图记录了甲、乙两组各四名同学的植树棵数,乙组记录中有一个数据模糊,无法确认,在图中以X表示.(1)如果X=8,求乙组同学植树棵数的平均数;(2) 记甲组四名同学为A1,A2,A3,A4,乙组四名同学为B1,B2,B3,B4,如果X=9,分别从甲、乙两组中随机选取一名同学,列举这两名同学的植树总棵数为19的所有情形并求该事件的概率.
已知集合,. (1)若,求; (2)若,求的取值范围.
设曲线:,表示的导函数。 (Ⅰ)当时,求函数的单调区间; (Ⅱ)求函数的极值; (Ⅲ)当时,对于曲线上的不同两点,是否存在唯一,使直线的斜率等于?并证明你的结论。
如图,在直三棱柱中, (1)求证 (2)在上是否存在点使得 (3)在上是否存在点使得?
已知函数. (Ⅰ)若曲线在点处的切线与直线垂直,求函数的单调区间; (Ⅱ)若对于都有成立,试求的取值范围;
如图,正三棱柱的所有棱长都为2,为中点。 (1)求证:面; (2)求二面角的余弦值; (3)求点到平面的距离。