以下茎叶图记录了甲、乙两组各四名同学的植树棵数,乙组记录中有一个数据模糊,无法确认,在图中以X表示.(1)如果X=8,求乙组同学植树棵数的平均数;(2) 记甲组四名同学为A1,A2,A3,A4,乙组四名同学为B1,B2,B3,B4,如果X=9,分别从甲、乙两组中随机选取一名同学,列举这两名同学的植树总棵数为19的所有情形并求该事件的概率.
已知函数满足,且在上恒成立. (1)求的值; (2)若,解不等式; (3)是否存在实数,使函数在区间上有最小值?若存在,请求出实数的值;若不存在,请说明理由.
已知点、,若动点满足. (1)求动点的轨迹曲线的方程; (2)在曲线上求一点,使点到直线:的距离最小.
数列的各项均为正数,为其前项和,对于任意的,总有成等差数列. (1)求; (2)求数列的通项公式; (3)设数列的前项和为,且,求证:对任意正整数,总有
在边长为的正方形中,分别为的中点,分别为的中点,现沿折叠,使三点重合,重合后的点记为,构成一个三棱锥. (1)请判断与平面的位置关系,并给出证明; (2)证明平面; (3)求四棱锥的体积.
为了对某课题进行研究,用分层抽样方法从三所高校A,B,C的相关人员中,抽取若干人组成研究小组,有关数据见下表(单位:人)
(1)求,; (2)若从高校B、C抽取的人中选2人作专题发言, 求这2人都来自高校C的概率.