已知、、为的三个内角,且其对边分别为、、,若.(1)求;(2)若,求的面积.
已知函数(,为正实数). (Ⅰ)若,求曲线在点处的切线方程; (Ⅱ)求函数的单调区间; (Ⅲ)若函数的最小值为,求的取值范围.
某市医疗保险实行定点医疗制度,按照“就近就医、方便管理”的原则,参加保险人员可自主选择四家医疗保险定点医院和一家社区医院作为本人就诊的医疗机构若甲、乙、丙、丁4名参加保险人员所在地区附近有A,B,C三家社区医院,并且他们的选择是相互独立的 (Ⅰ)求甲、乙两人都选择A社区医院的概率; (Ⅱ)求甲、乙两人不选择同一家社区医院的概率; (Ⅲ)设4名参加保险人员中选择A社区医院的人数为ξ,求ξ的分布列和数学期望.
如图,在三棱柱ABC-A1B1C1中,CC1⊥底面ABC,AC=BC=2,,CC1=4,M是棱CC1上一点 (Ⅰ)求证:BC⊥AM; (Ⅱ)若M,N分别是CC1,AB的中点,求证:CN //平面AB1M; (Ⅲ)若,求二面角A-MB1-C的大小.
在锐角中,,,分别为内角,,所对的边,且满足 (Ⅰ)求角的大小; (Ⅱ)若,且,,求的值.
如图,已知椭圆的离心率为,以该椭圆上的点和椭圆的左、右焦点为顶点的三角形的周长为.一等轴双曲线的顶点是该椭圆的焦点,设为该双曲线上异于顶点的任一点,直线和与椭圆的交点分别为和. (Ⅰ)求椭圆和双曲线的标准方程; (Ⅱ)设直线、的斜率分别为、,证明; (Ⅲ)是否存在常数,使得恒成立?若存在,求的值;若不存在,请说明理由.