如图1,已知AC∥BD,点P是直线AC、BD间的一点,连结AB、AP、BP,过点P作直线MN∥AC.(1)填空:MN与BD的位置关系是 ;(2)试说明∠APB=∠PBD +∠PAC;(3)如图2,当点P在直线AC上方时,(2)中的三个角的数量关系是否仍然成立?如果成立,试说明理由;如果不成立,试探索它们存在的关系,并说明理由.
计算:;
如图,已知A(﹣4,0),B(0,4),现以A点为位似中心,相似比为9:4,将OB向右侧放大,B点的对应点为C. (1)求C点坐标及直线BC的解析式; (2)一抛物线经过B、C两点,且顶点落在x轴正半轴上,求该抛物线的解析式并画出函数图象; (3)现将直线BC绕B点旋转与抛物线相交与另一点P,请找出抛物线上所有满足到直线AB距离为的点P.
在Rt△ABC中,BC=9, CA=12,∠ABC的平分线BD交AC与点D, DE⊥DB交AB于点E. (1)设⊙O是△BDE的外接圆,求证:AC是⊙O的切线; (2)设⊙O交BC于点F,连结EF,求的值.
六一儿童节,爸爸带着儿子小宝去方特欢乐世界游玩,进入方特大门,看见游客特别多,小宝想要全部玩完所有的主题项目是不可能的. (1)于是爸爸咨询导游后,让小宝上午先从A:太空世界;B:神秘河谷;C:失落帝国中随机选择两个项目,下午再从D:恐龙半岛,E:西部传奇;F:儿童王国;G:海螺湾.随机选择三个项目游玩,请用列举法或树形图说明当天小宝符合上述条件的所有可能的选择方式(用字母表示). (2)在(1)问的选择方式中,求小宝恰好上午选中A:太空世界,同时下午选中G:海螺湾这两个项目的概率.
如图,在梯形中,,,,于点E,F是CD的中点,DG是梯形的高. (1)求证:四边形AEFD是平行四边形; (2)设,四边形DEGF的面积为y,求y关于x的函数关系式.