在四棱锥中,平面ABCD,底面ABCD是菱形,,.(1)求证:平面PAC;(2)若,求PB与AC所成角的余弦值;(3)若PA=,求证:平面PBC⊥平面PDC
(从22/23/24三道解答题中任选一道作答,作答时,请注明题号;若多做,则按首做题计入总分,满分10分. 请将答题的过程写在答题卷中指定的位置)(本小题满分10分)选修4—5:不等式选讲设函数.(Ⅰ)求不等式的解集;(Ⅱ)若不等式的解集是非空的集合,求实数的取值范围.
(从22/23/24三道解答题中任选一道作答,作答时,请注明题号;若多做,则按首做题计入总分,满分10分. 请将答题的过程写在答题卷中指定的位置)(本小题满分10分)选修4—4:坐标系与参数方程已知极坐标系的极点与直角坐标系的原点重合,极轴与直角坐标系的轴的正半轴重合.直线的参数方程是(为参数),曲线的极坐标方程为.(Ⅰ)求曲线的直角坐标方程;(Ⅱ)设直线与曲线相交于,两点,求M,N两点间的距离.
(从22/23/24三道解答题中任选一道作答,作答时,请注明题号;若多做,则按首做题计入总分,满分10分. 请将答题的过程写在答题卷中指定的位置)(本小题满分10分)选修4—1:几何证明选讲如图,已知是的直径,,是上两点,于,交于,交于,.(Ⅰ)求证:是的中点;(Ⅱ)求证:.
(本小题满分分)已知函数().(Ⅰ)当时,求在区间[1,e]上的最大值和最小值;(Ⅱ)若在区间(1,+∞)上,函数的图象恒在直线下方,求的取值范围.
(本小题满分分)在平面直角坐标系中,已知两个定点和.动点在轴上的射影是(随移动而移动),若对于每个动点M总存在相应的点满足,且.(Ⅰ)求动点的轨迹的方程;(Ⅱ)设过定点的直线(直线与轴不重合)交曲线于,两点,求证:直线与直线交点总在某直线上.