直线与椭圆交于,两点,已知,,若且椭圆的离心率,又椭圆经过点,为坐标原点.(Ⅰ)求椭圆的方程;(Ⅱ)若直线过椭圆的焦点(为半焦距),求直线的斜率的值;
已知关于的不等式,(1)当时解不等式; (2)如果不等式的解集为空集,求实数的范围.
已知不等式的解集为(1)求的值;(2)解不等式
已知三棱锥各侧棱长均为,三个顶角均为,M,N分别为PA,PC上的点,求周长的最小值.
如图:空间四边形中,分别是上的点,且∥,求证:∥.
某化工厂生产的某种化工产品,当年产量在150吨至250吨之内,其年生产的总成本(万元)与年产量(吨)之间的关系可近似地表示为(1)当年产量为多少吨时,每吨的平均成本最低,并求每吨最低平均成本;(2)若每吨平均出厂价为16万元,求年生产多少吨时,可获得最大的年利润,并求最大年利润.