直线与椭圆交于,两点,已知,,若且椭圆的离心率,又椭圆经过点,为坐标原点.(Ⅰ)求椭圆的方程;(Ⅱ)若直线过椭圆的焦点(为半焦距),求直线的斜率的值;
已知向量,,且的最小正周期为 (Ⅰ)求的值; (Ⅱ)若,解方程; (Ⅲ)在中,,,且为锐角,求实数的取值范围.
已知圆,直线经过点, (Ⅰ)求以线段CD为直径的圆E的方程; (Ⅱ)若直线与圆C相交于,两点,且为等腰直角三角形,求直线的方程.
设△ABC的内角所对的边分别为,已知,, (Ⅰ)求△ABC的周长; (Ⅱ)求的值.
如图,已知椭圆,是长轴的左、右端点,动点满足,联结,交椭圆于点. (1)当,时,设,求的值; (2)若为常数,探究满足的条件?并说明理由; (3)直接写出为常数的一个不同于(2)结论类型的几何条件.
定义:设分别为曲线和上的点,把两点距离的最小值称为曲线到的距离. (1)求曲线到直线的距离; (2)若曲线到直线的距离为,求实数的值; (3)求圆到曲线的距离.