设,在平面直角坐标系中,已知向量,向量,,动点的轨迹为E.(1)求轨迹E的方程,并说明该方程所表示曲线的形状; (2)已知,证明:存在圆心在原点的圆,使得该圆的任意一条切线与轨迹E恒有两个交点A,B,且(O为坐标原点),并求出该圆的方程;(3)已知,设直线与圆C:(1<R<2)相切于A1,且与轨迹E只有一个公共点B1,当R为何值时,|A1B1|取得最大值?并求最大值.
已知向量. (1)当时,求的值; (2)设函数,已知在△ ABC中,内角A、B、C的对边分别为,若,求()的取值范围.
已知首项都是1的两个数列{an},{bn}(bn≠0,n∈N*) 满足anbn+1-an+1bn+2bn+1bn=0. (1)令cn=,求数列{cn}的通项公式; (2)若bn=3n-1,求数列{an}的前n项和Sn.
已知 (1)最小正周期及对称轴方程; (2)已知锐角的内角的对边分别为,且 ,,求边上的高的最大值.
已知命题:任意,有,命题:存在,使得.若“或为真”,“且为假”,求实数的取值范围.
(本小题满分12分)已知函数. (Ⅰ)当时,求函数的极值; (Ⅱ)若函数在区间上是减函数,求实数a的取值范围; (Ⅲ)当时,函数图象上的点都在所表示的平面区域内,求数a的取值范围