已知椭圆的中心在坐标原点O, 焦点在x轴上, 椭圆的短轴端点和焦点所组成的四边形为正方形, 两准线间的距离为4. (Ⅰ)求椭圆的方程;(Ⅱ)直线过点P(0, 2)且与椭圆相交于A.、B两点,当△AOB面积取得最大值时, 求直线的方程.
已知△ABC的三个内角A、B、C的对边分别为a、b、c,且b2+c2=a2+bc,求:(1) 2sinBcosC﹣sin(B﹣C)的值;(2)若a=2,求△ABC周长的最大值.
抛物线y2=2px(p>0)上纵坐标为-p的点M到焦点的距离为2. (1)求p的值; (2)如图,A,B,C为抛物线上三点,且线段MA,MB,MC 与x轴交点的横坐标依次组成公差为1的等差数列,若△AMB的面积是△BMC面积的,求直线MB的方程.
已知函数R). (1)若 ,求曲线 在点 处的的切线方程; (2)若 对任意 恒成立,求实数a的取值范围.
某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售.如果当天卖不完,剩下的玫瑰花做垃圾处理. (1)若花店一天购进17枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n∈N)的函数解析式. (2)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表:
(1)假设花店在这100天内每天购进17枝玫瑰花,求这100天的日利润(单位:元)的平均数; (2)若花店一天购进17枝玫瑰花,以100天记录的各需求量的频率作为各需求量发生的概率,求当天的利润不少于75元的概率.
已知数列 {an} 是首项为 a1=1 的等差数列,其前n项和为Sn,数列 {bn} 是首项 b1=2 的等比数列,且 b2S2=16,b1b3=b4. (1)求数列 {an},{bn} 的通项公式; (2)若数列 {cn} 满足 ,求数列 {cn} 的前n项和 Tn.