设抛物线的焦点为,经过点的动直线交抛物线于点,且.(1)求抛物线的方程;(2)若(为坐标原点),且点在抛物线上,求直线倾斜角;(3)若点是抛物线的准线上的一点,直线的斜率分别为.求证:当为定值时,也为定值.
已知函数(其中),、是函数的两个不同的零点,且的最小值为.(1)求的值;(2)若,求的值.
设函数.(1)对于任意实数,恒成立,求的最大值;(2)若方程有且仅有一个实根,求的取值范围.
已知函数的最大值为,且,是相邻的两对称轴方程.(1)求函数在上的值域;(2)中,,角所对的边分别是,且 ,,求的面积.
设函数.(1)写出函数f(x)的最小正周期及单调递增区间;(2)当时,函数f(x)的最大值与最小值的和为,求的值.
已知数列是等差数列,且,;又若是各项为正数的等比数列,且满足,其前项和为,.(1)分别求数列,的通项公式,;(2)设数列的前项和为,求的表达式,并求的最小值.