设抛物线的焦点为,经过点的动直线交抛物线于点,且.(1)求抛物线的方程;(2)若(为坐标原点),且点在抛物线上,求直线倾斜角;(3)若点是抛物线的准线上的一点,直线的斜率分别为.求证:当为定值时,也为定值.
F1、F2是的两个焦点,M是双曲线上一点,且,求三角形△F1MF2的面积.
已知抛物线的顶点在原点,对称轴是x轴,抛物线上的点M(-3,m)到焦点的距离等于5,求抛物线的方程和m的值.
已知抛物线.过动点M(,0)且斜率为1的直线与该抛物线交于不同的两点A、B,.(Ⅰ)求的取值范围;(Ⅱ)若线段AB的垂直平分线交轴于点N,求面积的最大值
如图,在四棱锥P-ABCD中,底面ABCD是矩形,PA ⊥平面ABCD,AP=AB=2,BC=2 ,E,F分别是AD,PC的中点 (Ⅰ)证明:PC ⊥平面BEF;(Ⅱ)求平面BEF与平面BAP夹角的大小。
动直线y =a,与抛物线相交于A点,动点B的坐标是,求线段AB中点M的轨迹的方程.