已知,,是否存在实数,使同时满足下列两个条件:(1)在上是减函数,在上是增函数;(2)的最小值是,若存在,求出,若不存在,说明理由.
设函数(1)求的最小正周期与单调递减区间;(2)在△ABC中,a、b、c分别是角A、B、C的对边,已知,△ABC的面积为的值。
(本小题满分12分)如图,多面体ABCDS中,面ABCD为矩形, , (1)求证:CD; (2)求AD与SB所成角的余弦值; (3)求二面角A—SB—D的余弦值.
设是椭圆上的两点,已知向量,若且椭圆的离心率e=,短轴长为,为坐标原点.(Ⅰ)求椭圆的方程;(Ⅱ)试问:△AOB的面积是否为定值?如果是,请给予证明;如果不是,请说明理由
本小题满分10分)已知向量.(Ⅰ)求;(Ⅱ)若,且的值.
已知数列的前n项和满足:(为常数,)(Ⅰ)求的通项公式;(Ⅱ)设,若数列为等比数列,求的值;(Ⅲ)在满足条件(Ⅱ)的情形下,,数列的前n项和为. 求证: .