已知椭圆的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线相切.(Ⅰ)求椭圆的方程;(Ⅱ)若过点(2,0)的直线与椭圆相交于两点,设为椭圆上一点,且满足(为坐标原点),当< 时,求实数的取值范围.
已知函数在上是增函数,在上是减函数,且的一个根为(Ⅰ)求的值;(Ⅱ)求证:还有不同于的实根、,且、、成等差数列;(Ⅲ)若函数的极大值小于,求的取值范围
已知函数.(Ⅰ)若,求的取值范围;(Ⅱ)证明:.
已知是二次函数,是它的导函数,且对任意的恒成立 (Ⅰ)求的解析式;(Ⅱ)设,曲线在点处的切线为与坐标轴围成的三角形面积为,求的最小值。
已知函数,求函数的单调区间和最值。
已知两定点F1(,0),F2(,0)满足条件的点P的轨迹方程是曲线C,直线与曲线C交于A、B两点,且.1、求曲线C的方程;2、若曲线C上存在一点D,使,求m的值及点D到直线AB的距离.