某地政府鉴于某种日常食品价格增长过快,欲将这种食品价格控制在适当范围内,决定对这种食品生产厂家提供政府补贴,设这种食品的市场价格为元/千克,政府补贴为元/千克,根据市场调查,当时,这种食品市场日供应量万千克与市场日需量万千克近似地满足关系:,。当市场价格称为市场平衡价格。(1)将政府补贴表示为市场平衡价格的函数,并求出函数的值域;(2)为使市场平衡价格不高于每千克20元,政府补贴至少为每千克多少元?
(本小题满分16分) 已知数列满足,(1)若,求; (2)是否存在,使当时,恒为常数。若存在求,否则说明理由; (3)若,求的前项的和(用表示)
本小题满分16分) 如图,已知圆是椭圆的内接△的内切圆, 其中为椭圆的左顶点. (1)求圆的半径; (2)过点作圆的两条切线交椭圆于两点,
.
判断直线与圆的位置关系并说明理由.
(本小题满分15分) 两县城A和B相距20km,现计划在两县城外以AB为直径的半圆弧上选择一点C建造垃圾处理厂,其对城市的影响度与所选地点到城市的的距离有关,对城A和城B的总影响度为城A与城B的影响度之和,记C点到城A的距离为x km,建在C处的垃圾处理厂对城A和城B的总影响度为y,统计调查表明:垃圾处理厂对城A的影响度与所选地点到城A的距离的平方成反比,比例系数为4;对城B的影响度与所选地点到城B的距离的平方成反比,比例系数为k ,当垃圾处理厂建在的中点时,对城A和城B的总影响度为0.065. (1)将y表示成x的函数; (11)讨论(1)中函数的单调性,并判断弧上是否存在一点,使建在此处的垃圾处理厂对城A和城B的总影响度最小?若存在,求出该点到城A的距离;若不存在,说明理由。
(本小题满分15分) 已知,函数. (Ⅰ)若在处取得极值,求函数的单调区间; (Ⅱ)求函数在区间上的最大值.(注:)
(本小题满分14分) 如图所示,在边长为12的正方形中,点在线段上,且,,作//,分别交,于点,,作//,分别交,于点,,将该正方形沿,折叠,使得与重合,构成如图2所示的三棱柱. (Ⅰ)求证:平面; (Ⅱ)求四棱锥的体积;