设点P是曲线C:上的动点,点P到点(0,1)的距离和它到焦点F的距离之和的最小值为(1)求曲线C的方程(2)若点P的横坐标为1,过P作斜率为的直线交C与另一点Q,交x轴于点M,过点Q且与PQ垂直的直线与C交于另一点N,问是否存在实数k,使得直线MN与曲线C相切?若存在,求出k的值,若不存在,说明理由。
用圆的下列性质类比球的有关性质,并判断其真假(1)圆心与弦(非直径)中点的连线垂直于弦;(2)与圆心距离相等的两弦相等;(3)圆的周长是直径);(4)圆的面积.
用数学归纳法证明:
某厂生产产品x件的总成本(万元),已知产品单价P(万元)与产品件数x满足:,生产100件这样的产品单价为50万元,产量定为多少件时总利润最大?
函数在区间上都有意义,且在此区间上①为增函数,;②为减函数,.判断在的单调性,并给出证明.
设复数z满足|z|=2,且(z-a)2=a,求实数a的值.