某校高一某班的一次数学测试成绩(满分100分)的茎叶图和频率分布直方图都受到不同程度的污染,但可见部分如下,据此解答如下问题:(Ⅰ) 求分数在[50,60)的频率及全班人数;(Ⅱ) 求分数在[80,90)之间的频数,并计算频率分布直方图中[80,90)间的矩形的高;(Ⅲ)若要从分数在[80,100]之间的试卷中任取两份分析学生失分情况,在抽取的试卷中,求至少有一份分数在[90,100]之间的概率.
把命题“未位数是0的整数可以被5整除”改写为“若p则q”的形式,并写出它的逆命题、否命题与逆否命题
已知各项均为正数的两个数列和满足:,, (Ⅰ)设,, 求证:(1)(2)数列是等差数列,并求出其公差; (Ⅱ)设,,且是等比数列,求和的值.
已知集合M是满足下列性质的函数f(x)的全体:存在非零常数T,对任意x∈R,有f(x+T)="T" f(x)成立. (Ⅰ)函数f(x)=" x" 是否属于集合M?说明理由; (Ⅱ)设函数f(x)=ax(a>0,且a≠1)的图象与y=x的图象有公共点,证明:f(x)=ax∈M; (Ⅲ)若函数f(x)=sinkx∈M ,求实数k的值.
已知,,其中是自然常数). (Ⅰ)求的单调性和极小值; (Ⅱ)求证:在上单调递增; (Ⅲ)求证:.
已知数列满足递推式,其中 (Ⅰ)求; (Ⅱ)并求数列的通项公式; (Ⅲ)已知数列有求数列的前n项和.