某校高一某班的一次数学测试成绩(满分100分)的茎叶图和频率分布直方图都受到不同程度的污染,但可见部分如下,据此解答如下问题:(Ⅰ) 求分数在[50,60)的频率及全班人数;(Ⅱ) 求分数在[80,90)之间的频数,并计算频率分布直方图中[80,90)间的矩形的高;(Ⅲ)若要从分数在[80,100]之间的试卷中任取两份分析学生失分情况,在抽取的试卷中,求至少有一份分数在[90,100]之间的概率.
(本小题12分)已知椭圆的两个焦点是和,并且经过点,抛物线的顶点在坐标原点,焦点恰好是椭圆的右顶点. (1)求椭圆和抛物线的标准方程; (2)过点作两条斜率都存在且互相垂直的直线,,交抛物线于点,,交抛物线于点,,求的最小值.
(本小题12分)据报道,全国很多省市将英语考试作为高考改革的重点,一时间“英语考试该如何改革”引起广泛关注,为了解某地区学生和包括老师、家长在内的社会人士对高考英语改革的看法,某媒体在该地区选择了3600人进行调查,就“是否取消英语听力”问题进行了问卷调查统计,结果如下表:
(1)已知在全体样本中随机抽取人,抽到持“应该保留”态度的人的概率为,现用分层抽样的方法在所有参与调查的人中抽取人进行问卷访谈,问应在持“无所谓”态度的人中抽取多少人? (2)在持“应该保留”态度的人中,用分层抽样的方法抽取人,再平均分成两组进行深入交流,求第一组中在校学生人数的分布列和数学期望.
(本小题满分12分)如图,已知四棱锥中,平面,,,且,,是的中点. (1)求异面直线与所成角; (2)求二面角的平面角的余弦值.
(本小题满分12分)如图所示,在四边形中,,且,,. (1)求的面积; (2)若,求的长.
(本小题满分14分) 设,是函数的两个极值点,且,且. (1)当时,求的单调递减区间; (2)求证:为定值; (3)求的取值范围.