巳知二次函数f(x)=ax2+bx+c (a>0,b,c∈R).(Ⅰ)已知a=2,f(2)=2,若f(x)≥2对x∈R恒成立,求f(x)的表达式;(Ⅱ)已知方程f(x)=0的两实根 满足 .设f(x)在R上的最小值为m,求证:m<x1.
已知中,面,,求证:面.
某旅游点有50辆自行车供游客租赁使用,管理这些自行车的费用是每日115元.根据经验,若每辆自行车的日租金不超过6元,则自行车可以全部租出;若超过6元,则每提高1元,租不出去的自行车就增加3辆.规定:每辆自行车的日租金不超过20元,每辆自行车的日租金元只取整数,并要求出租所有自行车一日的总收入必须超过一日的管理费用,用表示出租所有自行车的日净收入(即一日中出租所有自行车的总收入减去管理费后的所得). (1)求函数的解析式及定义域; (2)试问日净收入最多时每辆自行车的日租金应定为多少元?日净收入最多为多少元?
如图,已知三角形的顶点为求: (Ⅰ)AB边上的中线CM所在直线的方程; (Ⅱ)求△ABC的面积.
求经过两条直线:与:的交点,且垂直于直线:直线的方程.
)在棱长为1的正方体中,分别是的中点,在棱上,且,H为的中点,应用空间向量方法求解下列问题. (1)求证:; (2)如图建系,求EF与所成的角的余弦; (3)求FH的长.