如图,圆锥中,为底面圆的两条直径 ,AB交CD于O,且,,为的中点.(1)求证:平面;(2)求圆锥的表面积;求圆锥的体积。(3)求异面直线与所成角的正切值 .
已知函数(I)若的最大值和最小值;(II)若的值。
对400个某种型号的电子元件进行寿命追踪调查,其频率分布表如下表:
(I)在下图中补齐频率分布直方图;(II)估计元件寿命在500800h以内的概率。
在直角坐标系xoy中,直线的参数方程为(t为参数)。在极坐标系(与直角坐标系xoy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,圆C的方程为。(Ⅰ)求圆C的直角坐标方程;(Ⅱ)设圆C与直线交于点A、B,若点P的坐标为,求|PA|+|PB|。
已知函数. (Ⅰ)求的最小值;(Ⅱ)若对所有都有,求实数的取值范围.
某商场准备在五一劳动节期间举行促销活动,根据市场调查,该商场决定从3种服装商品、2种家电商品、4种日用商品中,选出3种商品进行促销活动.(Ⅰ)试求选出的3种商品中至少有一种日用商品的概率;(Ⅱ)商场对选出的A商品采用的促销方案是有奖销售,即在该商品现价的基础上将价格提高90元,同时允许顾客有3次抽奖的机会,若中奖,则每次中奖都可获得一定数额的奖金.假设顾客每次抽奖时获奖与否是等可能的,请问:商场应将中奖奖金数额最高定为多少元,才能使促销方案对自己有利?