(x2yz﹣1)2(2xy﹣2)﹣3
如图,AB为⊙O的直径,弦CD与AB相交于E,DE=EC,过点B的切线与AD的延长线交于F,过E作EG⊥BC于G,延长GE交AD于H。(1)求证:AH=HD;(2)若,DF=9,求⊙O的半径。
如图,伞不论张开还是收紧,伞柄AP始终平分同一平面内两条伞架所成的角∠BAC,当伞收紧时,结点D与点M重合,且点A、E、D在同一条直线上,已知部分伞架的长度如下:单位:cm
(1)求AM的长。(2)当∠BAC=104°时,求AD的长(精确到1cm),备用数据:sin52°=0.788,cos52°=0.6157,tan52°=1.2799。
吉安市某校对九年级学生进行“综合素质”评价,评价的结果为A(优)、B(良好)、C(合格)、D(不合格)四个等级,现从中抽测了若干名学生的“综合素质”等级作为样本进行数据处理,并作出如图所示的统计图,已知图中从左到右的四个长方形的高的比为:14︰9︰6︰1,评价结果为D等级的有2人,请你回答以下问题:(1)共抽测了多少人?(2)样本中B等级的频率是多少?C等级的频率是多少?(3)如果要绘制扇形统计图,A、D两个等级在扇形统计图中所占的圆心角分别是多少度?(4)该校九年级的毕业生共900人,假如“综合素质”等级为A或B的学生才能报考市一中,请你计算该校大约有多少名学生可以报考市一中?
如图,在平面直角坐标系中,直线y=2x+b(b<0)与坐标轴交于A,B两点,与双曲线(x>0)交于D点,过点D作DC⊥x轴,垂足为C,连接OD。已知△AOB≌△ACD。(1)如果b=-2,求k的值;(2)试探究k与b的数量关系,并写出直线OD的解析式。
一个不透明的口袋里装有分别标有汉字“秀”、“美”、“吉”、“安”的四个小球,除汉字不同之外,小球没有任何区别,每次摸球前先搅拌均匀再摸球。(1)若从中任取一个球,球上的汉字刚好是“吉”的概率为多少?(2)甲从中任取一球,不放回,再从中任取一球,请用树状图的方法,求出甲取出的两个球上的汉字恰能组成“秀美”或“吉安”的概率P1。(3)乙从中任取一球,记下汉字后再放回袋中,然后再从中任取一球,记乙取出的两个球上的汉字恰能组成“秀美”或“吉安”的概率为P2,指出P1,P2的大小关系(请直接写出结论,不必证明)。