将A、B两枚骰子各抛掷一次,观察向上的点数,问:(I)共有多少种不同的结果?(II)两枚骰子点数之和是3的倍数的结果有多少种?(III)两枚骰子点数之和是3的倍数的概率为多少?
如图,已知抛物线的焦点在抛物线上. (Ⅰ)求抛物线的方程及其准线方程; (Ⅱ)过抛物线上的动点作抛物线的两条切线、, 切点为、.若、的斜率乘积为,且,求的取值范围.
(本小题满分12分)“ALS冰桶挑战赛”是一项社交网络上发起的筹款活动,活动规定:被邀请者要么在24小时内接受挑战,要么选择为慈善机构捐款(不接受挑战),并且不能重复参加该活动.若被邀请者接受挑战,则他需在网络上发布自己被冰水浇遍全身的视频内容,然后便可以邀请另外3个人参与这项活动.假设每个人接受挑战与不接受挑战是等可能的,且互不影响. (Ⅰ)若某参与者接受挑战后,对其他3个人发出邀请,则这3个人中恰有2个人接受挑战的概率是多少? (Ⅱ)为了解冰桶挑战赛与受邀者的性别是否有关,某调查机构进行了随机抽样调查,调查得到如下列联表:
根据表中数据,是否有%的把握认为“冰桶挑战赛与受邀者的性别有关”? 附:
(本小题满分12分)设函数在时取得极值. (Ⅰ)求的值; (Ⅱ)求函数的单调区间.
已知椭圆C:的离心率为,是椭圆的两个焦点,P是椭圆上任意一点,且的周长是 (1)求椭圆C的方程; (2)设圆T:,过椭圆的上顶点作圆T的两条切线交椭圆于两点,当圆心在轴上移动且时,求的斜率的取值范围.
若函数是定义域D内的某个区间上的增函数,且在上是减函数,则称是上的“单反减函数”,已知 (1)判断在上是否是“单反减函数”; (2)若是上的“单反减函数”,求实数的取值范围.