已知 AB是圆O的直径,D为圆O上一点,过D作圆O的切线交AB延长线于点C,若DA=DC,求证:AB=2BC
双曲线C:="1" (a>0,b>0)的右顶点为A,x轴上有一点Q(2a,0),若C上存在一点P,使·=0,求此双曲线离心率的取值范围.
与双曲线=1有共同的渐近线,且过点(-3,2);求双曲线的标准方程.
已知动圆M与圆C1:(x+4)2+y2=2外切,与圆C2:(x-4)2+y2=2内切,求动圆圆心M的轨迹方程.
已知椭圆=1(a>b>0)的离心率为,直线y=x+1与椭圆相交于A、B两点,点M在椭圆上, = +,求椭圆的方程.
已知椭圆的中心在原点,离心率为,一个焦点是F(-m,0)(m是大于0的常数).(1)求椭圆的方程;(2)设Q是椭圆上的一点,且过点F、Q的直线l与y轴交于点M,若||=2||,求直线l的斜率.