已知曲线C的极坐标方程 是=1,以极点为原点,极轴为轴的正半轴建立平面直角坐标系,直线的参数方程为为参数)。(1)写出直线与曲线C的直角坐标方程;(2)设曲线C经过伸缩变换得到曲线,设曲线上任一点为,求的最小值。
某地区注重生态环境建设,每年用于改造生态环境总费用为亿元,其中用于风景区改造为亿元。该市决定建立生态环境改造投资方案,该方案要求同时具备下列三个条件:①每年用于风景区改造费用随每年改造生态环境总费用增加而增加;②每年改造生态环境总费用至少亿元,至多亿元;③每年用于风景区改造费用不得低于每年改造生态环境总费用的15%,但不得高于每年改造生态环境总费用的25%.若,,请你分析能否采用函数模型y=作为生态环境改造投资方案.
在平面直角坐标系中,已知圆:和直线:,为上一动点,,为圆与轴的两个交点,直线,与圆的另一个交点分别为.(1)若点的坐标为(4,2),求直线方程;(2)求证直线过定点,并求出此定点的坐标.
右图为一组合体,其底面为正方形,平面,,且(Ⅰ)求证:平面;(Ⅱ)求四棱锥的体积;(Ⅲ)求该组合体的表面积.
已知向量,向量,函数.(1)求的最小正周期;(2)已知分别为内角的对边,为锐角,,且恰是在上的最大值,求和的值.
已知等差数列中,公差,其前项和为,且满足:,.(Ⅰ)求数列的通项公式;(Ⅱ)令,(),求的最大值.