在平面直角坐标系xOy中,如图,已知椭圆C:的上、下顶点分别为A、B,点P在椭圆C上且异于点A、B,直线AP、PB与直线l:y=-2分别交于点M、N.(1)设直线AP、PB的斜率分别为k1,k2,求证:k1·k2为定值;(2)求线段MN长的最小值;(3)当点P运动时,以MN为直径的圆是否经过某定点?请证明你的结论.
(12分) 求的最大值.
(12分)已知
(12分) 求函数
(本小题满分10分)已知构成某系统的元件能正常工作的概率为p(0<p<1),且各个元件能否正常工作是相互独立的.今有2n(n大于1)个元件可按如图所示的两种联结方式分别构成两个系统甲、乙. (1)试分别求出系统甲、乙能正常工作的概率p1,p2; (2) 比较p1与p2的大小,并从概率意义上评价两系统的优劣.
(本小题满分10分)如图,在四棱锥OABCD中,底面ABCD是边长为1的菱形,∠ABC=45°,OA⊥底面ABCD,OA=2,M为OA的中点. (1) 求异面直线AB与MD所成角的大小; (2) 求平面OAB与平面OCD所成二面角的余弦值.