如图,已知半径为1的⊙与轴交于A、B两点,经过原点的直线MN切⊙ 于点M,圆心的坐标为(2,0).(1)求切线MN的函数解析式;(2)线段上是否存在一点,使得以P、O、A为顶点的三角形与相似?若存在,请求出所有符合条件的点的坐标;若不存在,请说明理由.(3)若将⊙沿着x轴的负方向以每秒1个单位的速度移动;同时将直线MN以每秒2个单位的速度向下平移,设运动时间为t(t>0),求t为何值时,直线MN再一次与⊙相切?(本小题保留3位有效数字)
如图,将矩形ABCD沿对角线BD对折,点C落在E处,BE与AD相交于点F.若DE=4,BD=8.(1)求证:AF=EF;(2)求证:BF平分∠ABD.
根据道路管理规定,在贺州某段笔直公路上行驶的车辆,限速40千米/时,已知交警测速点M到该公路A点的距离为米,∠MAB=45°,∠MBA=30°(如图所示),现有一辆汽车由A往B方向匀速行驶,测得此车从A点行驶到B点所用的时间为3秒.(1)求测速点M到该公路的距离;(2)通过计算判断此车是否超速.(参考数据:≈1.41,≈1.73,≈2.24)
在甲口袋中有三张完全相同的卡片,分别标有﹣1,1,2,乙口袋中有完全相同的卡片,分别标有﹣2,3,4,从这两个口袋中各随机取出一张卡片.(1)用树状图或列表表示所有可能出现的结果;(2)求两次取出卡片的数字之积为正数的概率.
解分式方程:.
在平面直角坐标系中,已知y=﹣x2+bx+c(b、c为常数)的顶点为P,等腰直角三角形ABC的顶点A的坐标为(0,﹣1),点C的坐标为(4,3),直角顶点B在第四象限.(1)如图,若抛物线经过A、B两点,求抛物线的解析式.(2)平移(1)中的抛物线,使顶点P在直线AC上并沿AC方向滑动距离为时,试证明:平移后的抛物线与直线AC交于x轴上的同一点.(3)在(2)的情况下,若沿AC方向任意滑动时,设抛物线与直线AC的另一交点为Q,取BC的中点N,试探究NP+BQ是否存在最小值?若存在,求出该最小值;若不存在,请说明理由.