我们知道,当时,代数式的值是1;而方程的解是;于是,我们就称方程是代数式当时的“结果方程”。已知:方程是代数式当时的结果方程,你能求出的值吗?
如图,在 Rt Δ ABC 中,点 O 在斜边 AB 上,以 O 为圆心, OB 为半径作圆,分别与 BC , AB 相交于点 D , E ,连接 AD .已知 ∠ CAD = ∠ B .
(1)求证: AD 是 ⊙ O 的切线.
(2)若 BC = 8 , tan B = 1 2 ,求 ⊙ O 的半径.
为了解朝阳社区 20 ~ 60 岁居民最喜欢的支付方式,某兴趣小组对社区内该年龄段的部分居民展开了随机问卷调查(每人只能选择其中一项),并将调查数据整理后绘成如下两幅不完整的统计图.请根据图中信息解答下列问题:
(1)求参与问卷调查的总人数.
(2)补全条形统计图.
(3)该社区中 20 ~ 60 岁的居民约8000人,估算这些人中最喜欢微信支付方式的人数.
已知, ΔABC 中, ∠ B = ∠ C , P 是 BC 边上一点,作 ∠ CPE = ∠ BPF ,分别交边 AC , AB 于点 E , F .
(1)若 ∠ CPE = ∠ C (如图 1 ) ,求证: PE + PF = AB .
(2)若 ∠ CPE ≠ ∠ C ,过点 B 作 ∠ CBD = ∠ CPE ,交 CA (或 CA 的延长线)于点 D .试猜想:线段 PE , PF 和 BD 之间的数量关系,并就 ∠ CPE > ∠ C 情形(如图 2 ) 说明理由.
(3)若点 F 与 A 重合(如图 3 ) , ∠ C = 27 ° ,且 PA = AE .
①求 ∠ CPE 的度数;
②设 PB = a , PA = b , AB = c ,试证明: b = a 2 − c 2 c .
我们定义:如果一个三角形一条边上的高等于这条边,那么这个三角形叫做“等高底”三角形,这条边叫做这个三角形的“等底”.
(1)概念理解:
如图1,在 ΔABC 中, AC = 6 , BC = 3 , ∠ ACB = 30 ° ,试判断 ΔABC 是否是”等高底”三角形,请说明理由.
(2)问题探究:
如图2, ΔABC 是“等高底”三角形, BC 是”等底”,作 ΔABC 关于 BC 所在直线的对称图形得到△ A ' BC ,连接 AA ' 交直线 BC 于点 D .若点 B 是△ AA ' C 的重心,求 AC BC 的值.
(3)应用拓展:
如图3,已知 l 1 / / l 2 , l 1 与 l 2 之间的距离为2.“等高底” ΔABC 的“等底” BC 在直线 l 1 上,点 A 在直线 l 2 上,有一边的长是 BC 的 2 倍.将 ΔABC 绕点 C 按顺时针方向旋转 45 ° 得到△ A ' B ' C , A ' C 所在直线交 l 2 于点 D .求 CD 的值.
已知,点 M 为二次函数 y = − ( x − b ) 2 + 4 b + 1 图象的顶点,直线 y = mx + 5 分别交 x 轴正半轴, y 轴于点 A , B .
(1)判断顶点 M 是否在直线 y = 4 x + 1 上,并说明理由.
(2)如图1,若二次函数图象也经过点 A , B ,且 mx + 5 > − ( x − b ) 2 + 4 b + 1 ,根据图象,写出 x 的取值范围.
(3)如图2,点 A 坐标为 ( 5 , 0 ) ,点 M 在 ΔAOB 内,若点 C ( 1 4 , y 1 ) , D ( 3 4 , y 2 ) 都在二次函数图象上,试比较 y 1 与 y 2 的大小.