在数列中,,且.(Ⅰ) 求,猜想的表达式,并加以证明;(Ⅱ)设,求证:对任意的自然数都有.
已知数列满足,(且).(Ⅰ)求数列的通项公式;(Ⅱ)令,记数列的前项和为,若恒为一个与无关的常数,试求常数和.
如图,已知直角梯形所在的平面垂直于平面,,,.(Ⅰ)点是直线中点,证明平面;(Ⅱ)求平面与平面所成的锐二面角的余弦值.
袋中有8个大小相同的小球,其中1个黑球,3个白球,4个红球.(I)若从袋中一次摸出2个小球,求恰为异色球的概率;(II)若从袋中一次摸出3个小球,且3个球中,黑球与白球的个数都没有超过红球的个数,记此时红球的个数为,求的分布列及数学期望E.
已知向量,,设函数,.(Ⅰ)求的最小正周期与最大值;(Ⅱ)在中,分别是角的对边,若的面积为,求的值.
设函数.(Ⅰ)当时,解不等式;(Ⅱ)当时,不等式的解集为,求实数的取值范围.