已知四边形ABCD中,AB∥CD,∠A=∠D=90°,AD=CD=4,AB=7.现有M、N两点同时以相同的速度从A点出发,点M沿A—B—C-D方向前进,点N沿A—D—C-B方向前进,直到两点相遇时停止.设点M前进的路程为,△AMN的面积为.(1)试确定△AMN存在时,路程的取值范围.(2)请你求出面积S关于路程的函数.(3)当点M前进的路程为多少时,△AMN的面积最大?最大是多少?
商场某种商品平均每天可销售30件,每件盈利50元. 为了尽快减少库存,商场决定采取适当的降价措施. 经调查发现,每件商品每降价1元,商场平均每天可多售出 2件.设每件商品降价x元. 据此规律,请回答: (1)商场日销售量增加件,每件商品盈利元(用含x的代数式表示); (2)在上述条件不变、销售正常情况下,每件商品降价多少元时,商场日盈利可达到2100元?
如图,已知E、F是□ABCD对角线AC上的两点,且BE⊥AC,DF⊥AC. (1)求证:△ABE≌△CDF; (2)请写出图中除△ABE≌△CDF外其余两对全等三角形(不再添加辅助线).
(1)计算: ; (2)解分式方程:.
如图,在平面直角坐标系中,把抛物线向左平移1个单位,再向下平移4个单位,得到抛物线.所得抛物线与轴交于两点(点在点的左边),与轴交于点,顶点为. (1)写出的值; (2)判断的形状,并说明理由; (3)在线段上是否存在点,使∽?若存在,求出点的坐标;若不存在,说明理由.
如图,直角梯形ABCD中,AD∥BC,∠A=90°,,交AB于E,DF平分∠EDC交BC于F,连结EF. (1)证明:; (2)当时,求EF的长.