一个口袋内有4个不同的红球,6个不同的白球.(1)从中任取4个球,红球个数不少于白球个数的取法有多少种?(2)若取一个红球记2分,取一个白球记1分,从中任取5个球,使总分不少于7的取法
(本小题满分12分)设同时满足条件:①;②(,是与无关的常数)的无穷数列叫“特界”数列.(1)若数列为等差数列,是其前项和,,求;(2)判断(1)中的数列是否为“特界” 数列,并说明理由。
(本小题满分12分)如图,在三棱柱中.(1)若,,证明:平面平面;(2)设是的中点,是上的一点,且平面,求的值.
(本小题满分12分)某高校从参加今年自主招生考试的学生中随机抽取容量为50的学生成绩样本,得频率分布表如下:
(1)写出表中①②位置的数据;(2)为了选拔出更优秀的学生,高校决定在第三、四、五组中用分层抽样法抽取6名学生进行第二轮考核,分别求第三、四、五各组参加考核人数;(3)在(2)的前提下,高校决定在这6名学生中录取2名学生,求2人中至少有1名是第四组的概率.
(本小题满分12分)设函数(1)求函数的最小正周期和单调递增区间;(2)中,角,,所对边分别为,,,且求的值.
已知函数(1)求证函数在上单调递增;(2)函数有三个零点,求的值;(3)对恒成立,求的取值范围.