如图:在平面直角坐标系中,网格中每一个小正方形的边长为1个单位长度;已知△ABC(1)将△ABC向x轴正方向平移5个单位得△A1B1C1,(2)再以O为旋转中心,将△A1B1C1旋转180°得△A2B2C2,画出平移和旋转后的图形,并标明对应字母.
扬州市“五个一百工程“在各校普遍开展,为了了解某校学生每天课外阅读所用的时间情况,从该校学生中随机抽取了部分学生进行问卷调查,并将结果绘制成如图不完整的频数分布表和频数分布直方图.
每天课外阅读时间 t / h
频数
频率
0 < t ⩽ 0 . 5
24
0 . 5 < t ⩽ 1
36
0.3
1 < t ⩽ 1 . 5
0.4
1 . 5 < t ⩽ 2
12
b
合计
a
1
根据以上信息,回答下列问题:
(1)表中 a = , b = ;
(2)请补全频数分布直方图;
(3)若该校有学生1200人,试估计该校学生每天课外阅读时间超过1小时的人数.
如图①是一张矩形纸片,按以下步骤进行操作:
(Ⅰ)将矩形纸片沿 DF 折叠,使点 A 落在 CD 边上点 E 处,如图②;
(Ⅱ)在第一次折叠的基础上,过点 C 再次折叠,使得点 B 落在边 CD 上点 B ' 处,如图③,两次折痕交于点 O ;
(Ⅲ)展开纸片,分别连接 OB 、 OE 、 OC 、 FD ,如图④.
(探究)
(1)证明: ΔOBC ≅ ΔOED ;
(2)若 AB = 8 ,设 BC 为 x , O B 2 为 y ,求 y 关于 x 的关系式.
如图,在 Rt Δ ABC 中, ∠ ACB = 90 ° , CD 是斜边 AB 上的中线,以 CD 为直径的 ⊙ O 分别交 AC 、 BC 于点 M 、 N ,过点 N 作 NE ⊥ AB ,垂足为 E .
(1)若 ⊙ O 的半径为 5 2 , AC = 6 ,求 BN 的长;
(2)求证: NE 与 ⊙ O 相切.
某公司共有400名销售人员,为了解该公司销售人员某季度商品销售情况,随机抽取部分销售人员该季度的销售数量,并把所得数据整理后绘制成如下统计图表进行分析.
频数分布表
组别
销售数量(件)
A
20 ⩽ x < 40
3
0.06
B
40 ⩽ x < 60
7
0.14
C
60 ⩽ x < 80
13
D
80 ⩽ x < 100
m
0.46
E
100 ⩽ x < 120
4
0.08
请根据以上信息,解决下列问题:
(1)频数分布表中, a = 、 b = ;
(2)补全频数分布直方图;
(3)如果该季度销量不低于80件的销售人员将被评为“优秀员工”,试估计该季度被评为“优秀员工”的人数.
已知抛物线 y = a x 2 + bx + c 与 x 轴交于 A ( - 1 , 0 ) , B ( 5 , 0 ) 两点, C 为抛物线的顶点,抛物线的对称轴交 x 轴于点 D ,连结 BC ,且 tan ∠ CBD = 4 3 ,如图所示.
(1)求抛物线的解析式;
(2)设 P 是抛物线的对称轴上的一个动点.
①过点 P 作 x 轴的平行线交线段 BC 于点 E ,过点 E 作 EF ⊥ PE 交抛物线于点 F ,连结 FB 、 FC ,求 ΔBCF 的面积的最大值;
②连结 PB ,求 3 5 PC + PB 的最小值.