已知函数, (1)(2)是否存在实数,使在上的最小值为,若存在,求出的值;若不存在,说明理由。
(本小题满分14分)在正三棱柱中,点是的中点,.(1)求证:∥平面;(2)试在棱上找一点,使.
(本小题满分14分)设△ABC三个内角A、B、C所对的边分别为a,b,c. 已知C=,acosA=bcosB.(1)求角A的大小;(2)如图,在△ABC的外角∠ACD内取一点P,使得PC=2.过点P分别作直线CA、CD的垂线PM、PN,垂足分别是M、N.设∠PCA=α,求PM+PN的最大值及此时α的取值.
已知等比数列中,各项都是正数,且成等差数列,则等于.
(本小题满分12分)如图,设为抛物线的焦点,是抛物线上一定点,其坐为 ,为线段的垂直平分线上一点,且点到抛物线的准线的距离为.(Ⅰ)求抛物线的方程;(Ⅱ)过点P任作两条斜率均存在的直线PA、PB,分别与抛物线交于点A、B,如图示,若直线AB的斜率为定值,求证:直线PA、PB的倾斜角互补.
(本小题满分11分)已知函数,其中,且曲线在点 的切线垂直于直线. (Ⅰ)求的值;(Ⅱ)求函数的单调区间和极值.