已知数列{an}和{bn}满足:,其中λ为实数,n为正整数.(Ⅰ)若数列{an}前三项成等差数列,求的值;(Ⅱ)试判断数列{bn}是否为等比数列,并证明你的结论;(Ⅲ)设0<a<b,Sn为数列{bn}的前n项和.是否存在实数λ,使得对任意正整数n,都有a<Sn<b?若存在,求λ的取值范围;若不存在,说明理由.
(本小题满分13分)已知二次函数f(x)满足:①在x=1时有极值;②图象过点(0,-3),且在该点处的切线与直线2x+y=0平行. ⑴求f(x)的解析式- ⑵求函数g(x)=f(x2)的单调递增区间.
(本小题满分12分)有20件产品,其中5件是次品,其余都是合格品,现不放回的从中依次抽2件.求:(1)第一次抽到次品的概率;(2)第一次和第二次都抽到次品的概率;(3)在第一次抽到次品的条件下,第二次抽到次品的概率.
(本小题满分12分)某省份今年是新课标高考的第一年,某校为了充分了解新课标高考,数学备课组从过去2年的新课标各地模拟卷中挑选出50份试卷进行研究,各地挑选的试卷数如下表所示:
(1)从这50份试卷中随机选出2份,求2份试卷选自同一地区的概率;(2)若从C、D两地区挑选出2份试卷进行研究,设挑选出地区C的试卷数为,求随机变量的分布列和数学期望。
(本小题满分10分)(1) 计算:C+C+C+…+C(2)证明:A+kA=A
(本小题12分)设函数f(x)=a·b,其中a=(2cosx,1), b=(cosx,sin2x), x∈R.(1)若f(x)=1-,且x∈[,],求x;(2)若函数y=2sin2x的图象按向量c=(m,n)(|m|<)平移后得到函数y= f(x)的图象,求实数m、n的值.