(本小题12分)设函数f(x)=a·b,其中a=(2cosx,1), b=(cosx,sin2x), x∈R.(1)若f(x)=1-,且x∈[,],求x;(2)若函数y=2sin2x的图象按向量c=(m,n)(|m|<)平移后得到函数y= f(x)的图象,求实数m、n的值.
在平面直角坐标系xOy中,已知椭圆C的中心在原点O,焦点在x轴上,短轴长为2,离心率为.(1)求椭圆C的方程;(2)设A,B是椭圆C上的两点,△AOB的面积为.若A、B两点关于x轴对称,E为线段AB的中点,射线OE交椭圆C于点P.如果=t,求实数t的值.
已知函数f(x)=x3-ax+1.(1)求x=1时,f(x)取得极值,求a的值;(2)求f(x)在[0,1]上的最小值;(3)若对任意m∈R,直线y=-x+m都不是曲线y=f(x)的切线,求a的取值范围.
某幼儿园准备建一个转盘,转盘的外围是一个周长为k米的圆.在这个圆上安装座位,且每个座位和圆心处的支点都有一根直的钢管相连经预算,转盘上的每个座位与支点相连的钢管的费用为3k元/根,且当两相邻的座位之间的圆弧长为x米时,相邻两座位之间的钢管和其中一个座位的总费用为k元.假设座位等距分布,且至少有两个座位,所有座位都视为点,且不考虑其他因素,记转盘的总造价为y元.(1)试写出y关于x的函数关系式,并写出定义域;(2)当k=50米时,试确定座位的个数,使得总造价最低?
已知函数f(x)=ax3+(a-2)x+c的图象如图所示.(1)求函数y=f(x)的解析式;(2)若g(x)=-2ln x在其定义域内为增函数,求实数k的取值范围.
设L为曲线C:y=在点(1,0)处的切线.(1)求L的方程;(2)证明:除切点(1,0)之外,曲线C在直线L的下方.