一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶的时间为,两车之间的距离为,图中的折线表示与之间的函数关系.根据图象进行以下探究:(1)请解释图中点B的实际意义;(2)求慢车和快车的速度;(3)求线段BC所表示的与之间的函数关系式,并写出自变量的取值范围;
如图,在平面直角坐标系中,已知点A(2,3)、B(6,3),连结AB. 如果点P 在直线y=x-1上,且点P到直线AB的距离小于1,那么称点P是线段AB的“邻近点”. (1)判断点C(,) 是否是线段AB的“邻近点”,并说明理由; (2)若点Q (m,n)是线段AB的“邻近点”,求m的取值范围.
已知:如图,⊙O是△ABC的外接圆,AB为⊙O的直径,弦CD交AB于E, ∠BCD=∠BAC . (1)求证:AC=AD; (2)过点C作直线CF,交AB的延长线于点F,若∠BCF=30°,则结论“CF一定是⊙O的切线”是否正确?若正确,请证明;若不正确,请举反例.
工厂加工某种零件,经测试,单独加工完成这种零件,甲车床需用x小时,乙车床需用 (x2-1)小时,丙车床需用(2x-2)小时. (1)单独加工完成这种零件,若甲车床所用的时间是丙车床的 ,求乙车床单独加工完成这种零件所需的时间; (2)加工这种零件,乙车床的工作效率与丙车床的工作效率能否相同?请说明理由.
已知A组数据如下:0,1,-2,-1,0,-1,3. (1)求A组数据的平均数; (2)从A组数据中选取5个数据,记这5个数据为B组数据. 要求B组数据满足两个条件:①它的 平均数与A组数据的平均数相等;②它的方差比A组数据的方差大.你选取的B组数据是,请说明理由. 【注:A组数据的方差的计算式是 SA2=[(x1-)2+(x2-)2+(x3-)2+(x4-)2+(x5-)2+(x6-)2+(x7-)2]】
已知:如图,在△ABC中,∠C=90°,点D、E分别在边AB、AC上,DE∥BC,DE=3, BC=9. (1)求 的值; (2)若BD=10,求sin∠A的值.