已知函数.(1)设时,求函数极大值和极小值;(2)时讨论函数的单调区间.
(本小题共13分)已知椭圆的右焦点为,为椭圆的上顶点,为坐标原点,且△是等腰直角三角形.(Ⅰ)求椭圆的方程;(Ⅱ)过点分别作直线,交椭圆于,两点,设两直线的斜率分别为,,且,证明:直线过定点().
(本小题共13分)已知函数.(Ⅰ)若,求曲线在点处的切线方程;(Ⅱ)若函数在区间上单调递增,求实数的取值范围.
(本小题共14分)如图,在四棱锥中,底面是正方形,平面, 是中点,为线段上一点. (Ⅰ)求证:; (Ⅱ)试确定点在线段上的位置,使//平面,并说明理由.
(本小题共13分)在等差数列中,,其前项和为,等比数列的各项均为正数,,公比为,且, .(Ⅰ)求与;(Ⅱ)数列满足,求的前项和.
(本小题共13分)已知△中,角,,的对边分别为,,,且,.(Ⅰ)若,求; (Ⅱ)若,求.