个排成一排,在下列情况下,各有多少种不同排法?(1)甲排头,(2)甲不排头,也不排尾,(3)甲、乙、丙三人必须在一起,(4)甲、乙之间有且只有两人,(5)甲、乙、丙三人两两不相邻。
(本题共12分)数列{}中,是不为零的常数,n=1,2,3…..),且成等比数列 (1 )求的值 (2) 求{}的通项公式
(本题共12分)已知,,且 (1)求的值(2)求
(本题满分14分) 已知函数其中实数。 (1)-2,求曲线在点处的切线方程; (2)x=1处取得极值,试讨论的单调性。
(本题满分14分) 已知数列{an}是首项为a1=,公比q=的等比数列,设bn+2=3logan(n∈N*),数列{cn}满足cn=an·bn. (1)求证:{bn}是等差数列; (2)求数列{cn}的前n项和Sn;
(本题满分13分) 设两个向量e1、e2满足|e1|=2,|e2|=1,e1、e2的夹角为60°,若向量2te1+7e2与向量e1+te2的夹角为 钝角,求实数t的取值范围.