某城市有连接8个小区A、B、C、D、E、F、G、H和市中心O的整齐方格形道路网,每个小方格均为正方形,如图,某人从道路网中随机地选择一条最短路径,由小区A前往H.(1)列出此人从小区A到H的所有最短路径(自A至H依次用所经过的小区的字母表示);(2)求他经过市中心O的概率.
【选修4-5:不等式选讲】 已知函数. (1)请写出函数在每段区间上的解析式,并在图上的直角坐标系中作出函数的图象; (2)若不等式对任意的实数恒成立,求实数的取值范围.
【选修4-4:坐标系与参数方程】 已知曲线的参数方程为:为参数),直线的参数方程为:为参数),点,直线与曲线交于两点. (1)写出曲线和直线在直角坐标系下的标准方程; (2)求的值.
【选修4-1:几何证明选讲】 如图,在中,于,于,交于点,若,. (1)求证:; (2)求线段的长度.
已知函数. (1)若恒成立,试确定实数的取值范围; (2)证明:.
椭圆,作直线交椭圆于两点,为线段的中点,为坐标原点,设直线的斜率为,直线的斜率为,. (1)求椭圆的离心率; (2)设直线与轴交于点,且满足,当的面积最大时,求椭圆的方程.